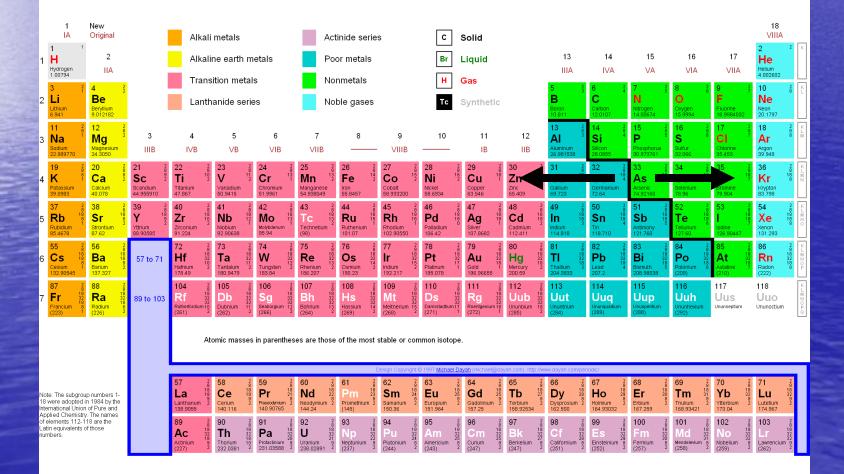

## **Periodic Table**

Schweitzer

## **Periodic Table**




# Family or column: Have similar properties



## Rows: Also called periods



### Metals vs. non-metals



## **Non-Metal Properties**

Color – varying colors
 Sulfur yellow
 Carbon black
 Iodine purple
 Brittle

Do not conduct electricity
Solids/Liquids and gases

## Non-Metal Example Carbon

Date of Discovery: Known to the ancients **Discoverer:** Unknown Name Origin: From the Latin carbo (coal) **Uses:** steel, filters **Obtained From:** burning with insufficient oxygen

## Non-metal example Oxygen

Date of Discovery: 1774
 Discoverer: Joseph Priestly
 Name Origin: From the Greek words
 oxus (acid) and gennan (generate)
 Uses: supports life
 Obtained From: from liquid air

## Non-metal properties Sulfur

Date of Discovery: Known to the ancients
 Discoverer: Unknown
 Name Origin: From the Latin word *sulfur* (brimstone)
 Uses: matches, gunpowder, medicines
 Obtained From: naturally

## Metallic properties

Properties
 – Luster
 – Ductile
 – Malleable
 – Strong





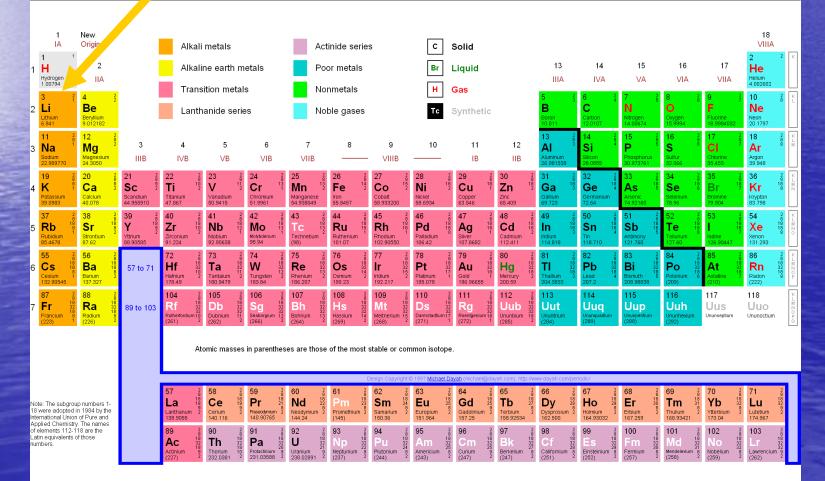


## Metal reactivity

 Some metals are more reactive then others.
 Hundreds of years old, gold still looks good as new!!






## Metal Reactivity

Metals like Iron rust very fast due to their high reactivity. In this case the reaction is between iron and oxygen.

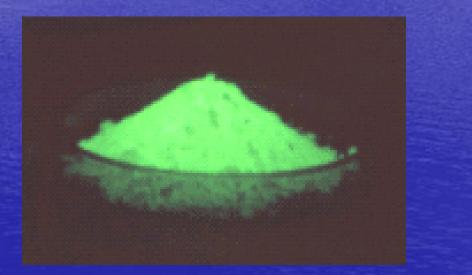




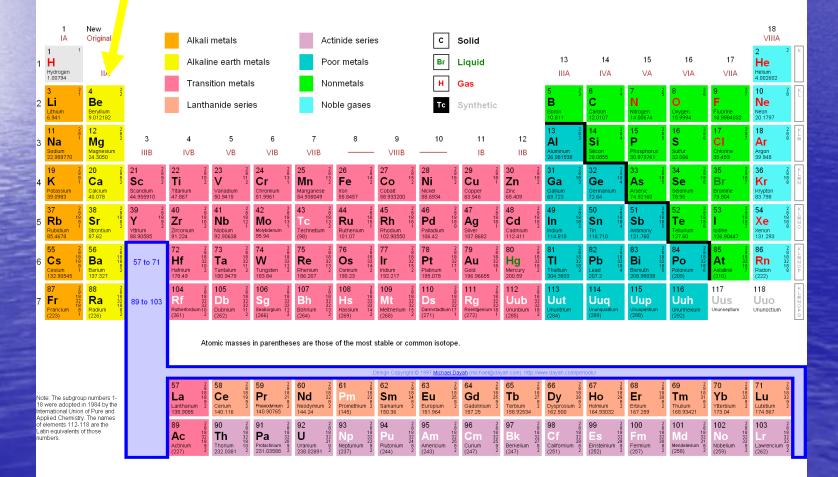
## Alkali metals



## Alkali metals -- Properties


- Very reactive metals that do not occur freely in nature.
- Extremely reactive with water
- alkali metals are softer than most other metals.
- Cesium and francium are the most reactive elements in this group




Sodium metal easily cut

## Cesium-137

Cesium-137 is a product of the fission reactions that take place in nuclear reactors or inside a nuclear weapon. Cesium-137 has a half-life of 30.1 years.



## **Alkaline Earth metals**



## **Alkaline Earth Metals**

Alkaline Earth Metals are softer than most other metals, and react readily with water but not as much as the corresponding alkali metals.



Many Alkaine earth metals are used to produce Color for fire works (Green – Barium / Red - strontium)

## Transition metals



## **Transition metal - Properties**

#### Properties vary greatly



Iron: Strong but corrodes



Gold/Silver: Very inert, soft, malleable



Liquid mercury

## Metalloids All the elements touching the stair except Aluminum

#### **Periodic Table of the Elements**

|   | 1<br>IA<br>1 1<br>H<br>Hydrogen<br>1.00794    | New<br>Original<br>2<br>IIA           |                                            | Alkali                                         | i metals<br>ine earth m<br>sition metal               |                                             | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tinide serie<br>or metals<br>nmetals     | 25                                                  | Br                                             | Solid<br>Liquid<br>Gas                                  |                                       | 13<br>IIIA                                    | 14<br>IVA                                                                                                                         | 15<br>VA                                                                                             | 16<br>VIA                                                                                          | 17<br>VIIA                                                | 18<br>VIIIA<br>2 <sup>2</sup><br>Helum<br>4.002602   | K        |
|---|-----------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------|
| 2 | 2 Li<br>Lithium<br>6.941                      | Beryllium<br>9.012182                 | i                                          | Lanth                                          | nanide serie                                          | es                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ble gases                                |                                                     | Тс                                             | Synthetic                                               |                                       | 5<br>B<br>Boron<br>10.811                     | 6 4<br>C<br>Carbon<br>2.0107                                                                                                      | 7 ŝ<br><b>N</b><br>Nitrogen<br>14.00674                                                              | 8 6<br>O<br>Oxygen<br>15.9994                                                                      | 9 7<br>F<br>Fluorine<br>18.9984032                        | 10 <sup>2</sup><br>Ne<br>Neon<br>20.1797             | Ľ        |
| 3 | 11 28<br>Na 1<br>Sodium<br>22.989770          | 12<br>Mg<br>Magnesium<br>24.3050      | 3<br>IIIB                                  | 4<br>IVB                                       | 5<br>VB                                               | 6<br>VIB                                    | 7<br>VIIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                        | 9<br>- VIIIB                                        | 10                                             | 11<br>IB                                                | 12<br>IIB                             | 13<br>Al<br>Aluminum<br>26.981538             | 2<br>3<br>5<br>1<br>28.0855                                                                                                       | 15 28<br>P<br>Phosphorus<br>30.973761                                                                | 16 28<br>S<br>Sulfur<br>32.066                                                                     | 17 28<br>Cl 7<br>Chlorine<br>35,453                       | 18 28<br>Ar<br>Argon<br>39.948                       | K L<br>M |
| 2 | 19 28<br>K 1<br>Potassium<br>39.0983          | 20 28<br>Ca 28<br>Calcium<br>40.078   | 21 28<br>Sc 22<br>Scandium<br>44.955910    | 22 28<br>Ti<br>Titanium<br>47.867              | 23 28<br>V 11<br>Vanadium<br>50.9415                  | 24 28<br>Cr 13<br>Chromium<br>51,9961       | 25 28 13 29 13 29 13 29 13 29 13 29 13 29 13 29 14 15 29 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 | 26 28<br>Fe 14<br>Iron<br>55.8457        | 27 28<br>Co 15<br>Cobalt 58.933200                  | 28 28<br>Ni <sup>16</sup><br>Nickel<br>58.6934 | 29 28<br>Cu 18<br>Copper<br>63.546                      | 30 28<br>Zn 18<br>Zinc<br>65.409      | 31<br>Ga<br>Gallium<br>69.723                 | 32<br>32<br>32<br>38<br>32<br>8<br>4<br>38<br>4<br>58<br>4<br>58<br>4<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 | 33 <sup>2</sup><br>As <sup>18</sup><br>Arsenic<br>74,92160                                           | 34 28<br>Se 18<br>Selenium<br>78.96                                                                | 35 28<br>Br <sup>18</sup><br>Bromine<br>79.904            | 36 28<br>Kr 18<br>Krypton<br>83.798                  | KLMN     |
| ę | 37 28<br>5 <b>Rb</b><br>Rubidium<br>85.4678   | 38 28<br>Sr 18<br>Strontium<br>87.62  | 39 28<br>Y 18<br>92<br>Yttrium<br>88.90585 | 40 28<br>Zr 18<br>21rconium<br>91.224          | 41 28<br>Nb 18<br>Nioblum<br>92.90638                 | 42<br>Mo<br>Molybdenum<br>95.94             | 43 28<br>Tc 18<br>13<br>Technetium<br>(98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44 28<br>Ru<br>Ruthenium<br>101.07       | 45 28<br>Rh 18<br>Rhodium<br>102.90550              | 46<br>Pd<br>Palladium<br>106.42                | 47 28<br>Ag 18<br>Silver<br>107.8682                    | 48 28<br>Cd 18<br>Cadmium<br>112.411  | 49<br>In 11<br>Indium<br>114.818              | 50 28<br>50 88<br>5n 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>1                              | 51 28<br>50 18<br>50 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>1 | 52 28<br><b>Te</b> 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>1 | 53 28<br>18<br>18<br>18<br>18<br>7<br>Iodine<br>126.90447 | 54 28<br>Xe 18<br>Xenon<br>131.293                   | KLINDO   |
| e | 55 2<br><b>Cs</b> 18<br>Cesium 1<br>132.90545 | 56 2<br>Ba 18<br>Barium 2<br>137.327  | 57 to 71                                   | 72 28<br>Hf 18<br>Hafnium 2<br>178.49          | 73 28<br><b>Ta</b> 18<br>32<br>Tantalum 2<br>180.9479 | 74 28<br>W 18<br>32<br>Tungsten 2<br>183.84 | 75 28<br><b>Re</b> 18<br>Rhenium 2<br>186.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76 28<br>Os 18<br>Osmium 2<br>190.23     | 77 2<br><b>Ir</b> 18<br>322<br>Iridium 2<br>192.217 | 78 28<br>Pt 322<br>Platinum 1<br>195.078       | 79 28<br>Au 18<br>Gold 1<br>196.96655                   | 80 28<br>Hg 18<br>Mercury 2<br>200.59 | 81<br><b>TI</b><br>11<br>13<br>13<br>204,3833 | 82 82 82 82 82 82 82 82 82 82 82 82 82 8                                                                                          | 83 28<br>Bi 18<br>Bismuth 5<br>208.98038                                                             | 84 28<br>Po 18<br>Polonium 6<br>(209)                                                              | 85 28<br>At 18<br>Astatine 7<br>(210) 7                   | 86 2<br>8 <b>Rn</b> 18<br>8 <b>Radon</b> 18<br>(222) | KUMZOR   |
| - | 87 28<br>7 Fr 18<br>7 Francium 8<br>(223) 1   | 88 28<br>Ra 18<br>Radium 8<br>(226) 2 | 89 to 103                                  | 104 28<br>Rf 18<br>Rutherfordium 10<br>(261) 2 | 105 28<br>Db 322<br>Dubnium 11<br>(262) 2             | 106 28<br>Sg 18<br>Seaborgium 12<br>(266) 2 | 107 28<br>Bh 322<br>Bohrium 13<br>(264) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108 28<br>Hs 18<br>Hassium 14<br>(269) 2 | 109 28<br>Mt 322<br>Meitnerium 15<br>(268) 2        | 110 28<br>Ds 32<br>Darmstadtium 17<br>(271) 1  | 111 28<br>Rg 18<br>Roentgenium 18<br>(272) 1            | 32                                    | 113<br>Uut<br>Ununtrium<br>(284)              | 114<br>Uuq<br><sup>Ununquadium</sup><br>(289)                                                                                     | 115<br>Uup<br><sup>Ununpentium</sup><br>(288)                                                        | 116<br>Uuh<br>Ununhexium<br>(292)                                                                  | 117<br>Uus<br><sub>Ununseptium</sub>                      | 118<br>Uuo<br>Ununoctium                             | KUMZORG  |
|   |                                               |                                       |                                            | At                                             | omic masses                                           | in parenthes                                | es are those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of the most                              | stable or con                                       | nmon isotope                                   | 9.                                                      |                                       |                                               |                                                                                                                                   |                                                                                                      |                                                                                                    |                                                           |                                                      |          |
|   | lote: The subgro                              |                                       |                                            | 57 <sup>2</sup><br>La <sup>1</sup>             | 58 2<br>Ce 19                                         | 59 28<br>Pr 21                              | 60 28<br>Nd 18<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61 28<br>Pm 18                           | 62 2<br>Sm 18<br>24                                 | © 1997 <u>Michael D</u><br>63 28<br>Eu 25      | ayah (michael@da<br>64 <sup>2</sup><br>Gd <sup>18</sup> | 65 28<br><b>Tb</b> 27                 | 66<br>Dy 2                                    | <sup>2</sup> 67 <sup>2</sup>                                                                                                      | 68 8<br>Er 18                                                                                        | 69 2<br><b>Tm</b> 18<br>31<br>Thulium 2                                                            | 70 28<br>Yb 18<br>32                                      | 71 <sup>2</sup><br>Lu <sup>18</sup>                  | ı        |
|   | 8 were adopted<br>iternational Unio           |                                       |                                            | Lanthanum 2<br>138.9055                        | Cerium 2<br>140.116                                   | Praseodymium 2<br>140.90765                 | Neodymium 2<br>144.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Promethium 2<br>(145)                    |                                                     | Europium 2<br>151.964                          | Gadolinium 2<br>157.25                                  | Terbium 2<br>158.92534                | Dysprosium<br>162.500                         | 8<br>2 Holmium 2<br>164.93032                                                                                                     | Erbium 2<br>167.259                                                                                  | Thulium 2<br>168.93421                                                                             | Ytterbium 2<br>173.04                                     | Lutetium 2<br>174.967                                |          |

<sup>2</sup>/<sub>1</sub> 93 <sup>2</sup>/<sub>1</sub> 94 <sup>2</sup>/<sub>1</sub> 95 <sup>2</sup>/<sub>1</sub> 96 <sup>2</sup>/<sub>1</sub> 97 <sup>2</sup>/<sub>1</sub> 98 <sup>13</sup>/<sub>14</sub> No. <sup>13</sup>/<sub>15</sub> Du. <sup>13</sup>/<sub>15</sub> Am. <sup>13</sup>/<sub>16</sub> Cm. <sup>13</sup>/<sub>15</sub> Pk. <sup>13</sup>/<sub>15</sub> Cf.

Note: The subgroup numbers 1-18 were adopted in 1984 by the International Union of Pure and Applied Chemistry. The names of elements 112-118 are the Latin equivalents of those

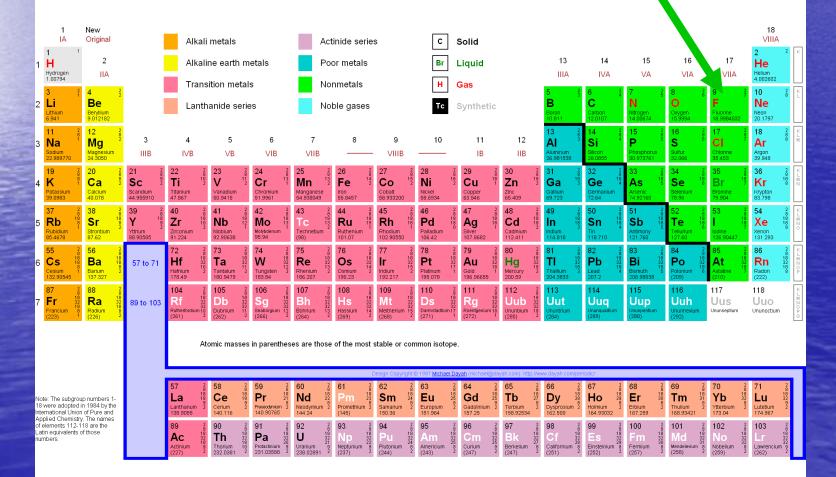
<sup>2</sup> 90

٨c

<sup>2</sup>/<sub>8</sub> 92

18 Da

## Metalloid Example silicon


Date of Discovery: 1823
 Discoverer: Jons Berzelius
 Name Origin: From the Latin word silex (flint)
 Uses: glass, semiconductors
 Obtained From: Second most abundant element. Found in clay, granite, quartz, sand



Silicon

- Very hard rock element
- Silicone (not the element)
  - Plastic like material used for human body augmentation.

## Halogen Family



## Halogen: Properties

 Only family that has all three states present.

All are very reactive.

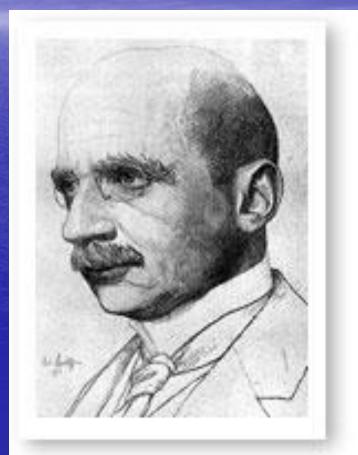


## Halogen: Reactivity

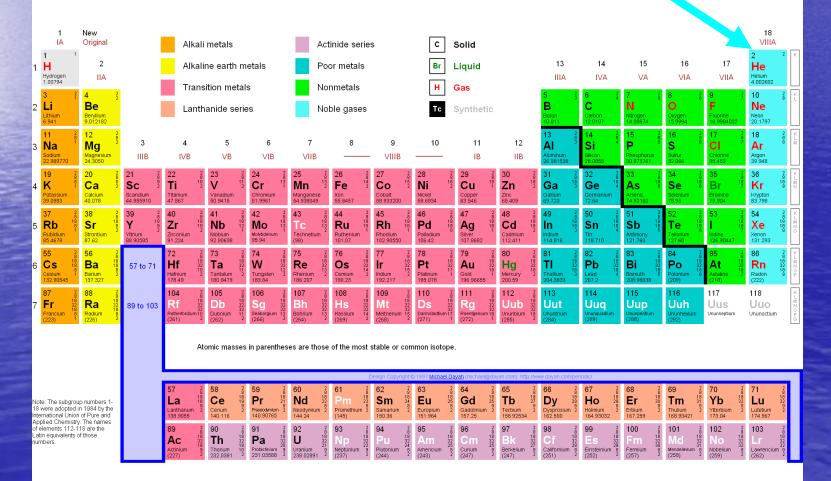
The larger the atom the less reactive.

- Iodine used to kill bacterial before surgery.
- Bromine kills bacteria in hot tubs.
- Chlorine kills all microbes in water.
- Fluorine kills everything in water satiation plant.
   Hence fluorinated water.

(font color corresponds to color of substance)


## Chlorine use during WWI

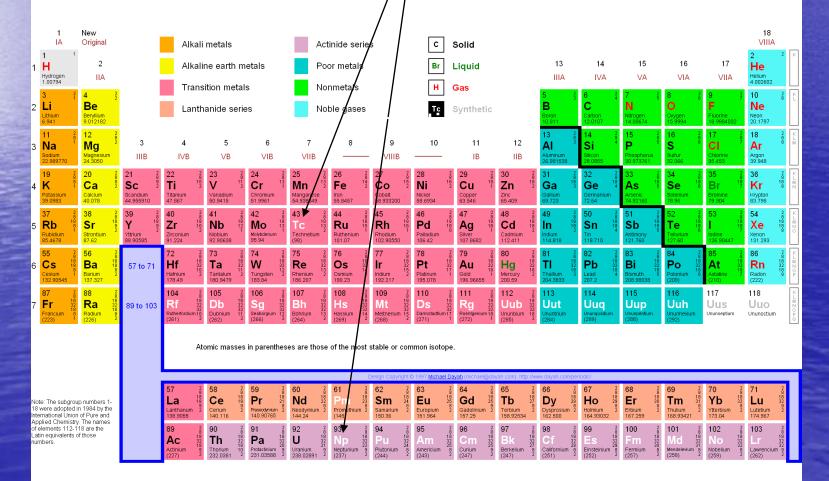
The German Army first used chlorine gas cylinders in April 1915 against the French Army at Ypres. French soldiers reported seeing yellow-green clouds drifting slowly towards the Allied trenches. They also noticed its distinctive smell which was like a mixture of pineapple and pepper.




## Fritz Haber

#### German scientist Developed process of producing ammonium Developed methodology for chlorine gassing during WWI Kicked out of Germany during WWII for being Jewish.




## Noble Gases



## Lanthanide series Actinide series

|   | 1<br>IA                                                | New<br>Original                               |                                            | Alkali                                          | metals                                                            |                                                  | Act                                       | inide serie                                                                         | s                                                   | С                                              | Solid                                        |                                                       |                                                                               |                                            |                                               |                                                                                                    |                                                                  | 18<br>VIIIA                                                                       |         |
|---|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|
| 1 | 1 <sup>1</sup><br>H<br>Hydrogen<br>1.00794             | 2<br>IIA                                      |                                            |                                                 | ne earth m                                                        |                                                  |                                           | or metals                                                                           |                                                     |                                                | Liquid                                       |                                                       | 13<br>IIIA                                                                    | 14<br>IVA                                  | 15<br>VA                                      | 16<br>VIA                                                                                          | 17<br>VIIA                                                       | 2 <sup>2</sup><br>He<br>Helium<br>4.002602                                        | К       |
| 2 | 3 1<br>2 Li<br>Lithium<br>6.941                        | 4 2<br>Be<br>Beryllium<br>9.012182            |                                            |                                                 | ition metal<br>anide serie                                        |                                                  | -                                         | nmetals<br>ble gases                                                                |                                                     |                                                | Gas<br>Synthetic                             |                                                       | 5 23<br>B<br>Beron<br>10.811                                                  | 6 24<br>C<br>Carbon<br>12.0107             | 7 25<br>N<br>Nitrogen<br>14.00674             | 8 2<br>6<br>Oxygen<br>15,9994                                                                      | 9 27<br>F<br>Fluorine<br>18.9984032                              | 10 28<br>Ne<br>Neon<br>20.1797                                                    | ΚĽ      |
| 3 | 11 28<br>Na 1<br>Sodium<br>22.989770                   | 12 <sup>2</sup><br>Mg<br>Magnesium<br>24.3050 | 3<br>IIIB                                  | 4<br>IVB                                        | 5<br>VB                                                           | 6<br>VIB                                         | 7<br>VIIB                                 | 8                                                                                   | 9<br>· VIIIB                                        | 10                                             | 11<br>IB                                     | 12<br>IIB                                             | 13 28<br>Al 3<br>Aluminum<br>26.981538                                        | 14 28<br>Si 4<br>Silicon<br>28.0855        | 15 28<br>P<br>Phosphorus<br>30.973761         | 16 28<br>S<br>Sulfur<br>32.066                                                                     | 17 28<br>CI 7<br>Chlorine<br>35.453                              | 18 28<br>Ar<br>Argon<br>39.948                                                    | K ⊓W    |
| 4 | 19 28<br>K 81<br>Potassium<br>39.0983                  | 20 20 20<br>Ca 20<br>Calcium<br>40.078        | 21 28<br>Sc 22<br>Scandium<br>44.955910    | 22 2<br><b>Ti</b> 10<br>2<br>Titanium<br>47.867 | 23 28<br>V 11<br>2<br>Vanadium<br>50.9415                         | 24 28<br>Cr 13<br>Chromium<br>51.9961            | 25 28<br>Mn 13<br>Manganese 54.938049     | 26 28<br>Fe 14<br>Iron<br>55.8457                                                   | 27 28<br>Co 15<br>Cobalt 58.933200                  | 28 28<br>Ni <sup>16</sup><br>Nickel<br>58.6934 | 29 28<br>Cu 18<br>Copper<br>63.546           | 30 28<br>Zn 18<br>Zinc<br>65:409                      | 31 28<br>Ga 18<br>Gallium<br>69.723                                           | 32 2<br>Ge 18<br>Germanium<br>72.64        | 33 28<br>As 18<br>Arsenic<br>74.92160         | 34 28<br>Se 18<br>Selenium<br>78.96                                                                | 35 28<br>Br 18<br>8romine<br>79.904                              | 36 28<br>Kr 18<br>Krypton<br>83.798                                               | N N N   |
| e | 37 28<br>8 <b>Rb</b> 18<br>85.4678 1                   | 38 2<br>Strontium<br>87.62                    | 39 28<br>Y 18<br>92<br>Yttrium<br>88.90585 | 40 28<br>Zr 18<br>Zirconium<br>91.224           | 41 28<br>Nb 18<br>Niobium<br>92,90638                             | 42 28<br>Mo 18<br>Molybdenum<br>95.94            | 43 28<br>Tc 18<br>Technetium<br>(98)      | 44 2<br>Ru 18<br>Ruthenium<br>101.07                                                | 45 28<br>Rh 18<br>Rhodium<br>102.90550              | 46 28<br>Pd 18<br>Palladium<br>106.42          | 47 28<br>Ag 18<br>Silver<br>107.8682         | 48 28<br>Cd 18<br>Cadmium<br>112,411                  | 49 28<br>10 18<br>10 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 50 28<br>Sn 18<br>Tin<br>118.710           | 51 28<br><b>Sb</b> 18<br>Antimony<br>121.760  | 52 28<br><b>Te</b> 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>1 | 53 2<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 54 28<br>Xe 18<br>Xenon<br>131.293                                                | NZZIN   |
| e | 55 28<br>55 <b>Cs</b> 18<br>50 Cesium 1<br>132.90545   | 56 28<br>Ba 18<br>Barium 2<br>197.327         | 57 to 71                                   | 72 28<br>Hf 18<br>Hafnium 2<br>178.49           | 73 28<br><b>Ta</b> 18<br>32<br>11<br>Tantalum 2<br>180.9479       | 74 28<br>W 18<br>32<br>Tungsten 2<br>183.84      | 75 28<br>Re 18<br>Rhenium 13<br>186.207   | 76 8<br>Os 18<br>Osmium 2<br>190.23                                                 | 77 28<br>Ir 18<br>192.217 2                         | 78 28<br>Pt 18<br>Platinum 1<br>195.078        | 79 2<br>Au 18<br>Gold 1<br>196.96655         | 80 28<br>Hg 18<br>Mercury 200.59                      | 81 28<br>TI 18<br>Thallium 3<br>204.3633                                      | 82 28<br>Pb 18<br>Lead 4<br>207.2          | 83 8<br>Bi 18<br>Bismuth 5<br>208.98038       | 84 28<br>Po<br>Polonium<br>(209)                                                                   | 85 28<br>At 18<br>Astatine 7<br>(210)                            | 86 28<br>Rn 18<br>Radon 28<br>18<br>32<br>18<br>32<br>18<br>32<br>18<br>32<br>222 | KLMNO₽  |
| 7 | 87 28<br>Francium 8<br>(223) 1                         | 88 2<br>Ra 18<br>32<br>Radium 8<br>(226) 2    | 89 to 103                                  | 104 28<br>Rf 18<br>Rutherfordium 10<br>(261) 2  | 105 28<br>Db 18<br>32<br>Dubnium 11<br>(262) 2                    | 106 28<br>Sg 32<br>Seaborgium 12<br>(266) 2      | 107 2<br>Bh 18<br>Bohrium 13<br>(264) 2   | 108 <sup>2</sup><br>Hs <sup>18</sup><br>Hassium <sup>14</sup><br>(269) <sup>2</sup> | 109 28<br>Mt 18<br>Meitherium 15<br>(268) 2         | 110 2<br>Ds 18<br>Darmstadtium 17<br>(271) 1   | 111 28<br>Rg 18<br>Roentgenium 18<br>(272) 1 | 112 28<br>Uub 32<br>Ununbium 18<br>(285) 2            | 113<br>Uut<br>Ununtrium<br>(284)                                              | 114<br>Uuq<br>Ununguadium<br>(289)         | 115<br>Uup<br><sup>Ununpentium</sup><br>(288) | 116<br>Uuh<br><sup>Ununhexium</sup><br>(292)                                                       | 117<br>Uus<br><sup>Ununseptium</sup>                             | 118<br>Uuo<br>Ununoctium                                                          | RUDZMLA |
|   |                                                        |                                               |                                            | At                                              | omic masses                                                       | in parenthes                                     | es are those                              | of the most                                                                         | stable or cor                                       | nmon isotope                                   | ð.                                           |                                                       |                                                                               |                                            |                                               |                                                                                                    |                                                                  |                                                                                   |         |
|   |                                                        |                                               |                                            |                                                 |                                                                   |                                                  |                                           |                                                                                     | Design Copyright                                    | © 1997 Michael D                               | <mark>ayah</mark> (michael@da                | ayah.com), http://w                                   | ww.dayah.com/per                                                              | iodic/                                     |                                               |                                                                                                    |                                                                  |                                                                                   |         |
| 1 | lote: The subgro<br>8 were adopted<br>ternational Unio | in 1984 by the                                |                                            | 57 28<br>La 18<br>Lanthanum 2<br>138.9055       | 58 28<br>Ce 18<br>Cerium 2<br>140.116                             | 59 28<br>Pr 18<br>Praseodymium 2<br>140.90765    | 60 28<br>Nd 18<br>Neodymium 2<br>144.24   | 61 28<br>Pm 18<br>Promethium 2<br>(145)                                             | 62 28<br><b>Sm</b> 18<br>24<br>5amarium 2<br>150.36 | 63 28<br>Eu 18<br>Europium 2<br>151.964        | 64 28<br>Gd 18<br>Gadolinium 2<br>157.25     | 65 28<br><b>Tb</b> 18<br>27<br>Terbium 2<br>158.92534 | 66 28<br>Dy 18<br>Dysprosium 28<br>162.500                                    | 67 28<br>Ho 18<br>Holmium 29<br>164.93032  | 68 28<br>Er 300<br>Erbium 2<br>167.259        | 69 28<br><b>Tm</b> 18<br>18<br>18<br>168.93421                                                     | 70 28<br>Yb 18<br>Ytterbium 2<br>173.04                          | 71 28<br>Lu 18<br>Lutetium 2<br>174.967                                           |         |
| L | f elements 112-<br>atin equivalents<br>umbers.         |                                               |                                            | 89 2<br>Actinium 9<br>(227) 2                   | 90 28<br><b>Th</b> 18<br>18<br>18<br>18<br>18<br>18<br>232.0381 2 | 91 28<br>Pa 18<br>Protactinium 20<br>231.03588 2 | 92 28<br>U 18<br>Uranium 9<br>238.02891 2 | 93 28<br>Np 18<br>Neptunium 9<br>(237) 2                                            | 94 28<br>Pu 18<br>Plutonium 24<br>(244) 2           | 95 28<br>Am 18<br>Americium 225<br>(243) 225   | 96 28<br>Cm 322<br>Curium 92<br>(247) 2      | 97 28<br>Bk 322<br>Berkelium 22<br>(247) 2            | 98 28<br>Cf 32<br>Californium 28<br>(251) 2                                   | 99 28<br>Es 32<br>Einsteinium 8<br>(252) 2 | 100 28<br>Fm 32<br>Fermium 88<br>(257) 2      | 101 28<br>Mcd 18<br>Mendelevium 8<br>(258) 2                                                       | 102 2<br>No 182<br>Nobelium 22                                   | 103 28<br>Lr 32<br>Lawrencium 9<br>(262) 2                                        |         |

## Synthetic Some chemicals are made in the lab



## Diatomic – Super 7

#### **Periodic Table of the Elements**

18

| IA                                          | Original                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alkali                                                                            | metals                                    |                                             | Act                                                                                                          | inide series                                        | 3                                          | С                                          | Solid                                        |                                             |                                          |                                               |                                                                             |                                              |                                       | VIIIA                                                     |          |
|---------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------------------|----------|
| Hydrogen                                    | 2<br>IIA                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                           |                                             |                                                                                                              | or metals                                           |                                            |                                            | Liquid                                       |                                             | 13<br>IIIA                               |                                               |                                                                             |                                              |                                       | 2 2<br>He<br>Helium<br>4.002602                           | К        |
| 3 2<br>Li<br>Lithium<br>6.941               | 4 22<br>Be<br>Beryllium<br>9.012182   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | ition metal<br>anide serie                |                                             | -                                                                                                            | nmetals<br>ble gases                                |                                            |                                            | Gas<br>Synthetic                             |                                             | 5 23<br>B<br>Boron<br>10.811             | Carbon<br>12.0107                             | 7 5<br><b>N</b><br>Nitrogen<br>14.00674                                     | o 6<br>O<br>Oxygen<br>15,9994                | 9 7<br>F<br>Fluorine<br>18.9984032    | 10 28<br>Ne<br>Neon<br>20.1797                            | KL       |
| 11 28<br>Na<br>Sodium<br>22.989770          | 12<br>Mg<br>Magnesium<br>24.3050      | 3<br>IIIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>IVB                                                                          | 5<br>VB                                   | 6<br>VIB                                    | 7<br>VIIB                                                                                                    | 8                                                   | 9<br>VIIIB                                 | 10                                         | 11<br>IB                                     | 12<br>IIB                                   | 13 28<br>Al 3<br>Aluminum<br>26.981538   | 14 28<br>Silicon 28.0855                      | 15 28<br>P<br>Phosphorus<br>30.973761                                       | 1€ 8<br>S<br>Su fur<br>32 066                | 17 28<br>Cl<br>Chlorine<br>35.453     | 18 28<br>Ar<br>Argon<br>39.948                            | K ∟<br>M |
| 19 28<br>K 1<br>Potassium<br>39.0983        | 20 28<br>Ca 2<br>Calcium<br>40.078    | 21 28<br>Sc 22<br>Scandium<br>44.955910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 28<br>Ti 10<br>10<br>2<br>Titanium<br>47.867                                   | 23 28<br>V 11<br>Vanadium<br>50.9415      | 24 28<br>Cr 13<br>Chromium<br>51.9961       | 25 28 13 2<br>Manganese 54.938049                                                                            | 26 28<br>Fe 14<br>14<br>2<br>Iron<br>55.8457        | 27 28<br>Co 15<br>Cobalt<br>58.933200      | 28 28<br>Ni 16<br>2<br>Nickel<br>58.6934   | 29 28<br>Cu 18<br>Copper<br>63.546           | 30 28<br>Zn 18<br>Zinc<br>65:409            | 31 28<br>Ga 18<br>Gallium<br>69.723      | 32 18<br>Ge 18<br>Germanium<br>72.64          | 33 28<br>As 18<br>Arsenic<br>74.92160                                       | 34 28<br>Se enium<br>78 96                   | 35<br>Br<br>Bromine<br>79.904         | 36 28<br>Kr 18<br>Krypton<br>83.798                       | ZWLY     |
| 37 2<br><b>Rb</b> 18<br>Rubidium<br>85.4678 | 38<br>Sr<br>Strontium<br>87.62        | 39 28 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 18 22 | 40 28<br><b>Zr</b> 18<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 41 28<br>Nb 18<br>Niobium<br>92.90638     | 42<br>Mo<br>95.94                           | 43<br>Tc<br><sup>18</sup><br><sup>13</sup><br><sup>2</sup><br><sup>13</sup><br><sup>2</sup><br><sup>13</sup> | 44 8<br>Ru 18<br>Ruthenium<br>101.07                | 45 28<br>Rh<br>Rhodium<br>102.90550        | 46 28<br>Pd 18<br>Palladium<br>106.42      | 47 28<br>Ag 18<br>Silver<br>107.8682         | 48 28<br>Cd 18<br>Cadmium<br>112.411        | 49 28<br>10 18<br>114.818                | 50 28<br>Sn 18<br>Tin<br>118.710              | 51 28<br><b>Sb</b> 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 52 28<br>Te 18<br>Te lurium<br>12 1.60       | 53 28<br>887<br>Iodine<br>126,90447   | 54 28<br>Xe 18<br>Xenon<br>131.293                        | NUNC     |
| 55 28<br>Cs 18<br>Cesium 1<br>132.90545     | 56 28<br>Ba 18<br>Barium 2<br>137.327 | 57 to 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72 28<br>Hf 18<br>Hafnium 2<br>178.49                                             | 73 28<br>Ta 18<br>12<br>180.9479 21       | 74 28<br>W 18<br>Tungsten 2<br>183:84       | 75 28<br><b>Re</b> 18<br>Rhenium 2<br>186.207                                                                | 76 28<br>Os 18<br>0smium 2<br>190.23                | 77 8<br>8<br>1r 18<br>17<br>192.217        | 78 28<br>Pt 18<br>91<br>195.078 17<br>1    | 79 28<br>Au 18<br>Gold 18<br>196.96655       | 80 28<br>Hg 18<br>Mercury 200.59            | 81 28<br>TI 18<br>Thallium 3<br>204.3833 | 82 2<br><b>Pb</b> 32<br>Lead 4<br>207.2       | 83 28<br>Bi 18<br>Bismuth 208.98038                                         | 84 8<br>Polonium 6<br>(209)                  | 85 28<br>At 18<br>Astatine 7<br>(210) | 86 28<br>Rn 18<br>Radon 28<br>18<br>32<br>18<br>8<br>222) | KLMNOP   |
| 87 2<br>Fr 32<br>Francium 8<br>(223) 1      | 88 28<br>Ra 18<br>Radium 8<br>(226) 2 | 89 to 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104 28<br>Rf 32<br>Rutherfordium 10<br>(261) 2                                    | 105 28<br>Db 32<br>Dubnium 111<br>(262) 2 | 106 28<br>Sc 32<br>Seaborgium 12<br>(266) 2 | 107 28<br>Bh 32<br>Bohrium 13<br>(264) 2                                                                     | 108 28<br>Hs <sup>18</sup><br>Hassium 14<br>(269) 2 | 109 28<br>Mt 18<br>Metherium 15<br>(268) 2 | 110 2<br>B 32<br>Damstadtium 17<br>(271) 1 | 111 28<br>Rg 12<br>Roentgenium 18<br>(272) 1 | 112 28<br>Uub 32<br>Ununbium 18<br>(285) 22 | 113<br>Uut<br>Ununtrium<br>(284)         | 114<br>Uuq<br><sup>Ununquadium</sup><br>(289) | 115<br>Uup<br><sup>Ununpentium</sup><br>(288)                               | 116<br>Uuh<br><sup>Ununhexium</sup><br>(292) | 117<br>Uus<br>Ununseptium             | 118<br>Uuo<br>Ununoctium                                  | KUMZORG  |

Atomic masses in parentheses are those of the most stable or common isotope.

Note: The subgroup numbers 1-18 were adopted in 1984 by the International Union of Pure and Applied Chemistry. The names of elements 112-118 are the Latin equivalents of those numbers.

New

| 57 28<br>La 18<br>Lanthanum 2<br>138.9055 | 58 28<br>Ce 18<br>Cerium 2<br>140.116      | 59 28<br>Pr 18<br>Praseodymium 2<br>140.90765   | 60 28<br>Nd 18<br>Neodymium 2<br>144.24   | 61 28<br>Pm 23<br>Promethium 2<br>(145)                                             | 62 28<br><b>Sm</b> 24<br>Samarium 2<br>150.36 | 63 28<br>Europium 2<br>151.964             | 64 28<br>Gd 18<br>Gadolinium 2<br>157.25    | 65 28<br>Tb 18<br>Terbium 27<br>158.92534     | 66 28<br>Dy 28<br>Dysprosium 2<br>162.500   | 67 28<br>Ho<br>Holmium<br>164.93032 2     | 68 28<br>Er 300<br>Erbium 2<br>167.259        | 69 28<br><b>Tm</b> 18<br>11<br>11<br>11<br>12<br>12<br>168.93421 | 70 28<br>Yb 18<br>Ytterbium 2<br>173.04  | 71<br>Lu<br>Lutetium<br>174.967    |
|-------------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------|------------------------------------|
| 89 28<br>Actinium 92<br>(227) 2           | 90 28<br>Th 18<br>Thorium 10<br>232.0381 2 | 91 28<br>Pa 18<br>Protactinium 9<br>231.03588 2 | 92 28<br>U 18<br>Uranium 9<br>238.02891 2 | 93 <sup>8</sup><br>Np <sup>18</sup><br>Neptunium <sup>9</sup><br>(237) <sup>2</sup> | 94 8<br>Pu 18<br>Plutonium 8<br>(244) 2       | 95 28<br>Am 18<br>Americium 225<br>(243) 2 | 96 28<br>Cm 18<br>32<br>Curium 9<br>(247) 2 | 97 28<br>Bk 18<br>Berkelium 27<br>Berkelium 2 | 98 28<br>Cf 32<br>Californium 28<br>(251) 2 | 99 8<br>Es 32<br>Einsteinium 8<br>(252) 2 | 100 28<br>Fm 18<br>32<br>Fermium 8<br>(257) 2 | 101 28<br>Mod 32<br>Mendelevium 8<br>(258) 2                     | 102 28<br>No 18<br>Nobelium 8<br>(259) 2 | 103<br>Lr 3<br>Lawrencium<br>(262) |